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Abstract. We have studied theoretically the influence of adsorbate vibration on the resonant
tunnelling current in STM. This study is realized by adapting the Domcke–Cederbaum formalism
combined with a tight-binding approximation of the tip–adsorbate–substrate system. We have
varied parametrically the bias voltage, the tip–adsorbate–substrate separations, the position of
the resonant level relative to the Fermi level of the system and the vibrational energy of the
adsorbate. An application to a hydrogenoid system between a tungsten tip and substrate is
presented.

1. Introduction

It is definitively established that the scanning tunnelling microscope (STM) is a very
powerful tool to obtain local structural information on metallic and semiconducting surfaces.
Unfortunately STM use for unambiguous determination of the nature of an adsorbate is
still an open problem. It is expected that the vibrational excitation of the chemical bond
between the adsorbate and the substrate should provide information for the identification of
the specific atoms or molecules adsorbed on surfaces. Until now, efforts to identify changes
in the STM current induced through vibrational excitation have not achieved much success.

We consider the tunnelling of electrons from the tip to an adsorbate on a metal surface.
The adsorbate is assumed to have an electronic resonance near the Fermi level. This
resonance is derived from a localized level on the adsorbate coupled with two continuum
energy bands of the substrate and of the tip. By applying a bias voltage, a net tunnel
current flows between the surface and the tip through the resonant level of the adsorbate.
This resonant tunnelling process can induce vibrational excitation of the adsorbate, and
changes are expected to be seen in the tunnelling current.

Persson and Baratoff (1987) pointed out that the tunnelling electrons can induce
vibrational excitation of adsorbates also by the dipole scattering mechanism. They showed
that resonant tunnelling can give a relative change in the tunnelling conductance which
is greater by a factor of 10 than the dipole mechanism change. To prove this fact, they
have used (Persson and Baratoff 1987) an Anderson–Newns–Grimley type Hamiltonian
and the calculations are made in the limit of the second-order perturbation expansion.
Gata and Antoniewicz (1993) have used a Hamiltonian of the same type as Persson and
Baratoff (1987) to study the same resonant process. They solved the problem by using the
Heinsenberg equations of motion for the operators.
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The resonant tunnelling of electrons in the STM is very similar to the inelastic electron
scattering from gas-phase vibrating molecules. A well documented gas-phase description
of this process was realized by Domcke and Cederbaum (1977).

In this work we use a similar Hamiltonian as Gata and Antoniewicz (1993) and we
solve the problem of resonant tunnelling by adapting the Domcke–Cederbaum formalism
combined with a tight-binding method of description of the tip–adsorbate–substrate system.
We have made detailed studies of the dependence of the tunnelling current and of the
conductance, on the bias voltage, vibrational energy of the adsorbate, Fermi level position
and tip–adsorbate–substrate separation. Finally an application for a hydrogen-like system
placed between a tungsten tip and surface is presented. Our calculations apply for small
tip–adsorbate separations, when there is a considerable overlap between the wave functions
of the tip and the adsorbate.

2. The Hamiltonian model

We consider the following Hamiltonian that contains the vibration of the adsorbate and the
coupling between the adsorbate with the substrate and the STM tip:

Ĥ (z) = εa(z)a+a +
∑
kL,R

εkL,Ra
+
kL,R
akL,R +

∑
kL,R

[V̂akL,R (z)a
+akL,R + HC] + ω(b+b + 1

2) (1)

εa(z) is the resonance level at a distancez (z associated with the vibrational mode of the
adsorbate).εkL and εkR label the energy levels of the one-particle eigenstate of the metal
tip (L) and the metal substrate (R) respectively.VakL andVakR are the matrix elements for
the electron transfer between tip and adsorbate and between adsorbate and substrate.εa(z)

andVakL,R are adiabatically dependent on the nuclear parameter of the adsorbatez:

z =
(

h̄

2mω

)1/2

(b+ + b). (2)

m is the effective mass of adsorbate; ¯hω is the vibrational energy.a+ anda, a+kL,R andakL,R
andb+ andb are the creation and annihilation operators for the adsorbate, tip and substrate,
and for the vibration mode.

By expandingεa(z) to the first order inz

εa(z) ∼= ε0+
(
∂εa

∂z

)
z=0

z (3)

we can rewrite our Hamiltonian (1):

Ĥ = Ĥ0+ V̂ (4a)

Ĥ0 = ε0a+a +
∑
kL,R

εkL,Ra
+
kL,R
akL,R + ω(b+b + 1

2) (4b)

V̂ =
∑
kL,R

(V̂akL,Ra
+akL,R + HC)+ k0a+a(b+ + b) (4c)

where

k0 =
(
h̄

2m

)1/2(
∂εa

∂z

)
z=0

.

Because of thez dependence, the matrix elementsV̂akL,R are in fact operators in the ‘vibration
space’ and

[V̂akL,R , b] 6= 0.
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3. The Green function expansion method

To compute the resonant tunnel current we will adapt the Domcke–Cederbaum formalism
for gas-phase inelastic collisions. First we need the transition matrix elements from the
initial state (described as a direct product between tip states|kL〉 and vibrational ground
state|0〉 of the adsorbate) to the final state (a direct product between the substrate state|kR〉
and excited state|m〉 of the adsorbate):

=(kR ⊗m, kL ⊗ 0) = 〈kR ⊗m|T̂ |kL ⊗ 0〉. (5)

The conservation of energy requires thatεkR +mh̄ω = εkL ≡ ε.
We can use the well known decomposition of theT̂ operator:

T̂ = V̂ + V̂ ĜV̂ (6)

with

Ĝ = 1

ε − Ĥ + iη
. (7)

Because we assume the orthogonality of the states|kL〉, |kR〉 and|a〉 among themselves, we
have

=(kR ⊗m, kL ⊗ 0) = 〈kR ⊗m|V̂ ĜV̂ |kL ⊗ 0〉 = 〈a ⊗m|V̂kRaĜVakL |a ⊗ 0〉
= 〈m|V̂kRa(〈a|Ĝ|a〉)VakL |0〉. (8)

For the determination of〈a|Ĝ|a〉 it is useful to perform the next decomposition of the
HamiltonianĤ :

Ĥ = Ĥ1+ Ĥ2 (9)

with

Ĥ1 = Ĥ0+K0a+a(b+ + b) (10)

Ĥ2 =
∑
kL,R

(V̂akL,Ra
+akL,R + HC) (11)

and the next expansion of the Green functionĜ:

Ĝ = Ĝ1+ ĜĤ2Ĝ1 = Ĝ1+ Ĝ1Ĥ2Ĝ1+ ĜĤ2Ĝ1Ĥ2Ĝ1. (12)

So we write

〈a|Ĝ1|a〉 =
〈
a

∣∣∣∣ 1

ε − Ĥ1+ iη

∣∣∣∣a〉 = 1

ε − [ε0+ ωb+b +K0(b+ + b)] + iη

〈a|Ĝ1Ĥ2Ĝ1|a〉 = 0

〈a|ĜĤ2Ĝ1Ĥ2Ĝ1|a〉 = 〈a|Ĝ|a〉
∑
kL,R

(
V̂akL,R

1

ε − (εkL,R + ωb+b)+ iη
V̂kL,Ra

)
× 1

ε − [ε0+ ωb+b +K0(b+ + b)] + iη
.

Thus

〈a|Ĝ|a〉 = 1

ε − [ε0+ ωb+b +K0(b+ + b)] −∑kL,R

(
V̂akL,R

1
ε−(εkL,R+ωb+b)+iη V̂kL,Ra

) . (13)
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By using the notations

1(ε − ωb+b, z) = P
∑
kL,R

V̂akL,R
1

ε − εkL,R − ωb+b
V̂kL,Ra (14)

0(ε − ωb+b, z) = 2π
∑
kL,R

V̂akL,R δ(ε − εkL,R − ωb+b)V̂kL,Ra (15)

the transition moment can be rewritten as

=(kR ⊗m, kL ⊗ 0) =
〈
m

∣∣∣∣V̂kRa 1

ε − [ε0+ ωb+b +K0(b+ + b)] −1− 1
2i0

V̂akL

∣∣∣∣0〉. (16)

We expand now1(z), 0(z) to first order inz:

1 ∼= 1(ε − ωb+b, 0)+ 1

2

[(
∂1

∂z

)
z=0

z+ z
(
∂1

∂z

)
z=0

]
(17)

0 ∼= 0(ε − ωb+b, 0)+ 1

2

[(
∂0

∂z

)
z=0

z+ z
(
∂0

∂z

)
z=0

]
. (18)

We suppose that

V̂akL,R (z) ≈ V̂akL,R (0) = VakL,R .
With the above assumptions, the transition moments become

=(kR ⊗m, kL ⊗ 0) = VkRa(0)VakL(0)
〈
m

∣∣∣∣ 1

ε −H
∣∣∣∣0〉 (19)

where

H = ε′ + ωb+b +K ′(b+ + b)+ (b+ + b)K ′ +K0(b+ + b) (20)

with

ε′ = ε0+1(ε − ωb+b, 0)− 1
2i0(ε − ωb+b, 0) (21a)

K ′ = 1

2

[(
h̄

2mω

)1/2(
∂1

∂z

)
z=0

− i

2

(
h̄

2mω

)1/2(
∂0

∂z

)
z=0

]
. (21b)

We are interested in the probability of tunnelling of an electron having the initial energy
εkL in a final state with an energyεkR :

T (εkR , εkL) =
∑
k′L

∑
k′R

∞∑
m=0

|=(k′R ⊗m, k′L ⊗ 0)|2δ(εk′L − εk′R −mh̄ω)δ(εkL−εk′L)δ(εkR−εk′R ).

(22)

Until now we have not considered the influence of the bias voltageV .
We choose the origin of energy at the position ofεa and the changes in the energy level

in the tip and the substrate are

εVkL = ε0
kL
+ eV

2
(23a)

εVkR = ε0
kR
+ eV

2
. (23b)
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Figure 1. A schematic model for the tip–adsorbate–substrate system.R
L,R
0 are the distances

between the adsorbate and the tip and substrate respectively. 1L,R denote the orbitals on the tip
and substrate which overlap the adsorbate.

The relation (22) becomes

T (εVkR , ε
V
kL
) =

∞∑
m=0

∑
k′R

|Vk′Ra|2δ
(
ε0
k′R
− εVkR −

eV

2

)

×
∑
k′L

|Vak′L |2δ
(
ε0
k′L
− εVkL +

eV

2

) ∣∣∣∣〈m∣∣∣∣ 1

εkL −H
∣∣∣∣0〉∣∣∣∣2δ(εVkL − εVkR −mh̄ω).

(24)

To simplify the notation we will omit in the following the superscriptV to denote the energy
levels in the presence of the bias.

4. The tunnelling current in STM

We determine the tunnelling current at 0 K.

J =
∫

dεkR

∫
dεkL T (εkR , εkL)

[
1−2L

(
εF + eV

2

)]
2

(
εF − eV

2

)

=
[ eVh̄ω ]∑
m=0

∫ εF+ eV
2

εF+ eV
2 +mh̄ω

dε0R

(
ε + eV

2
−mh̄ω

)
0L

(
ε − eV

2

) ∣∣∣∣〈m ∣∣∣∣ 1

ε −H
∣∣∣∣ 0

〉∣∣∣∣2 .
(25)

In the above expression2 is the Fermi distribution function.
We need the explicit evaluation of the functions1 and0.

1(ε) = P
∑
kL

V̂akL
1

ε − (ε0
kL
+ eV/2) V̂kLa + P

∑
kR

V̂akR
1

ε − (ε0
kL
− eV/2) V̂kRa

= 10
L

(
ε − eV

2

)
+10

R

(
ε + eV

2

)
. (26)

Similarly we write

0(ε) = 00
L

(
ε − eV

2

)
+ 00

R

(
ε + eV

2

)
. (27)

In the following we choose a specific geometry for the tip–adsorbate–substrate system. The
tip will be modelled as a semi-infinite chain of atoms coupled with an atomic adsorbate
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chemisorbed on the top position on the (001) surface of a crystal (see figure 1). For the
description of the tip and the substrate we use the tight-binding approximation:

|kL,R〉 =
∑
i

ckL,Ri |i〉 (28)

where the state|i〉 describes an atomic orbital centred on the sitei. The hopping integrals
are nonzero only among the nearest neighbours:

〈a|H |iL,R〉 = βL,Rδ1L,RiL,R . (29)

The state|1L〉 corresponds to the last orbital of the tip and the orbital|1R〉 describes the
substrate atom on which is placed the adsorbate (see figure 1).

Then

|VakL,R |2 = |βL,R|2|ckL,R1L,R |2 (30)

and

00
R,L(ε) = 2|βR,L|2n1L,R (ε). (31)

The density of statesn1L on the tip is (for a semiinfinite chain of atoms) (Desjonquères and
Spanjard 1993)

n1L(ε) =
1

2π

√
4α2− ε2

α2
(32)

and the density of states corresponding to a (001) surface (Desjonquères and Spanjard 1993)

n1R (ε) ≡ n0(ε) = 1

2π

∫ ∞
−∞

eiεx [J 3
0 (2αx)+ J 2

0 (2αx)J2(2αx)] dx. (33)

In the above expressions (31) and (32),α represents the hopping integral between two
neighbour atoms.

1 functions are related to the0 functions through a Hilbert transformation:

10
L(ε) =



|βL|2ε +
√
ε2− 4α2

4α2
ε < −2α

|βL|2 ε

4α2
|ε| < 2α

|βL|2ε −
√
ε2− 4α2

4α2
ε > 2α

(34)

10
R(ε) = |βR|2

∫ ∞
0

sin(εx) 2J 2
0 (2αx)

[
J0(2αx)+ 1

2αx
J1(2αx)

]
dx (35)

00
R(ε) = 2|βR|2

∫ ∞
0

cos(εx) 2J 2
0 (2αx)

[
J0(2αx)+ 1

2αx
J1(2αx)

]
dx. (36)

The first derivative of the1 and0 functions is obtained from thez dependence of the
hopping integrals:

〈a|H |1L,R〉 ≡ βL,R(z) = β0 e
−q
(
R
L,R
0
R0
−1

)
. (37)

So
∂0L,R

∂z

∣∣∣∣
z=0

= (±)
(
−2q

R0

)
0L,R(R

L,R
0 ) (38a)

∂1L,R

∂z

∣∣∣∣
z=0

= (±)
(
−2q

R0

)
1L,R(R

L,R
0 ). (38b)

For the significance and the numerical values of the parameters entering (37, 38a,b) see
(Forni et al 1992).
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5. Evaluation of the vibrational transition moments with the continuum fraction
method

In the vibrational wave function representation{|m〉}, ε −H matrix is tridiagonal:
E0 −K0

√
1 · ·

−K0

√
1 E1 −K1

√
2 ·

· −K1

√
2 E2 ·

· · · ·

 (39)

where

En = ε −
[
ε0+1(ε − nh̄ω)− 1

2
0(ε − nh̄ω)

]
− nh̄ω

Kn = K0+ 1

2

(
h̄

2mω

)1/2{(
∂[1(ε − nh̄ω, z)+1(ε − (n+ 1)h̄ω, z)]

∂z

)∣∣∣∣
z=0

− i

2
·
(
∂[0(ε − nh̄ω, z)+ 0(ε − (n+ 1)h̄ω, z)]

∂z

)∣∣∣∣
z=0

}
.

In consequence〈
0

∣∣∣∣ 1

ε −H
∣∣∣∣0〉 = 1

E0−K2
0/{E1− 2K2

1/[E2− 3K2
2/(E3− · · ·)]}

. (40)

For the evaluation ofRn0 = 〈n|1/(ε − H)|0〉 we use the following recurrence relation
(Domcke and Cederbaum 1980):

√
nKn−1Rn−10− EnRn0+

√
n+ 1KnRn+10 = 0 (41)

with

R10 = E0R00− 1

K0
.

6. Results and discussion

It is difficult to make a complete model for the tip–adsorbate–substrate system which also
includes the vibrational degrees of freedom of the components. Any realistic model which
considers the essential physics of the problem in appropriate parameters can give useful
information on the STM processes, by varying the parameters in a wide range of values.

In the following calculations we choose a hydrogen atom placed between a tungsten
tip and substrate. All the parameters entering the hopping integrals and the adsorption
distances forH on tungsten are taken from the article by Forniet al (1992). For the
density of states corresponding to the (100) face of the tungsten we used the relation (33).
We also performed the same calculations with a rectangular shape density but the results
are not very dependent on this change. The tip is modelled by a linear chain of tungsten
atoms with the corresponding density of states, given by the expression (32). The resonant
level is taken as the origin for the energy.

Figure 2 shows the energy diagram for our system (a) for an infinitesimal bias voltage
between the tip and the substrate and (b) for a finite bias voltageV . In figure 2(a)εF
denotes the position of the Fermi level of the tip and substrate relative to the resonant level
εa. In figure 3 we present a tridimensional plot of the tunnelling current dependence (25)
for different values of the distanced = RL0 = RR0 , and the position of the Fermi level
relative to the resonant level.
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Figure 2. An energy diagram for the tip–absorbate–substrate system, for an infinitesimal bias
voltage between the tip and substrate (a) and for a finite bias voltageV (b). In (b) εF is the
position of the Fermi level relative to the resonant levelεa of the adsorbate.

Figure 3. The tunnelling current dependence on the distancesRL0 = RR0 = d and on the

positions of the Fermi levelsεL,RF relative toεa .

As expected the tunnelling current decreases when the distance between the substrate
and the tip grows. This is due to the fact that the projection of the density of states of
the adsorbate on the tip decreases exponentially with the distance. The tunnelling current
diminishes when the lifetime of the resonant level grows too much. At the same time the
current does not change significantly when the distanced is reduced to around 2 au. Even
if the projected electronic density of states of the tip on the adsorbate increases, the shift of
the resonant level also increases. In these conditions, the electrons tunnel directly between
the tip and the substrate and the resonant tunnelling through the adsorbate is ineffective.
For a fixed tip–adsorbate–substrate separation, the tunnelling current depends on the Fermi
level positionεF relative to the resonant level position. This level can be situated above (or
below) the Fermi level of the substrate and the tipELF = ERF . In this case, the tunnelling
is possible only on the tail of the Lorentzian shape of the resonant level and the tunnelling
current is not so high. The maximum of the current is obtained when the resonant level
coincides with the Fermi level of the system.
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Figure 4 presents the resonant tunnelling current as a function of the bias voltage and
the distance between the tip and adsorbate (the distance between adsorbate and substrate is
kept constant at 2.1 au).

Figure 4. The tunnelling current dependence on the tip–adsorbate–separationRL0 and on the
applied bias voltageV .

It is very interesting to note that on lowering the distance between the tip and the
adsorbate the resonant tunnelling current has a maximum at around 2.5 au. By lowering
this distance, the projected electronic density of states of the tip on the adatom grows (the
lifetime decreases). At the same time there is a considerable increase of the shift of the
resonant level. This last effect is dominant, which explains the decrease of the resonant
tunnelling current for low tip–adsorbate separation. To understand the above effects we
show in figure 5(a) and (b) the variation of the quantity|R00|2 (which is related to the shift
of the resonant level) and the0L (related to the projected density of states) as functions
of the tip–adsorbate separation. The resonant current is proportional to the ‘product’ of
the two curves (figure 5(c)), which explains the maximum in figure 4 forRL0 = 2.5 au.
This distance between the tip and adsorbate, corresponding to the maximum in the resonant
tunnelling, seems to be too short to be seen experimentally, because we are in the region of
close contact and the chemical bonding can dominate. The value of 2.5 au corresponds to
the specific adsorption system H on W(100). When we consider other atoms or molecules,
the maximum occurs at larger separations and such behaviour in the current dependence
can present experimental interest.

We stress the fact that the maximum appears only if the adsorbate–substrate distance
is nearly constant when the tip approaches the adsorbate. If we change simultaneously the
distancesRL0 andRR0 as in figure 3, our calculations predict a saturation of the resonant
current for low separations. This situation can be related to the experimental behaviour
observed by Gimzewski and Moller reproduced by Lang (1987, 1989). The calculations
performed by Lang to explain the presence of a resistance plateau near the point contact
are based on a jellium model of the tip and adsorbate. We consider that the appearance of
a maximum or a plateau in the resonant current dependence is determined by the specific
system under investigation.
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Figure 5. The plots of|R00|2 (a), 0L (b) and of the currentJ (c), as functions ofRL0 (RR0 is
kept constant at 2.1 au).

By approaching the sample with the tip, the potential interaction of an adsorbed atom on
the sample can be modelled with a double-well potential. In this work we have considered
low tip–sample separations and the adsorbate oscillates in a single-well potential. For larger
tip–sample separations quantum coherence oscillations of the adsorbate can appear between
the two wells as described by (Grigorescuet al 1997) for an Xe atom adsorbed on an Ni
surface (the situation of the Xe atom is somewhat different because of physisorption instead
of the chemisorption discussed in the present paper).

When we change the bias voltage for a fixed vibrational energy ¯hω, the tunnelling
current presents discontinuities (which signify the opening of the inelastic channels involving
phonons). These discontinuities are not visible in the current dependence but can be
demonstrated only by studying the first derivative of the current∂I/∂V as presented
in figure 6. Here we have also changed the vibrational energy of the adsorbate. The
conductance of the system∂I/∂V presents a discontinuity which correspond to the first
inelastic channel (eV = h̄ω). The next inelastic channels are also present but the amplitudes
of the discontinuities decrease so only the first inelastic channel is important. It would be
interesting to study the conditions when the next inelastic channels are important. In the
calculations of figure 5 we have varied the vibrational energy as a simple parameter without
changing the hopping integralsVak. This assumption is a good approximation for low
vibrational energies, but for high vibrational energies the explicit dependence on vibration
of these parameters must be included.
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Figure 6. The conductance dependence on the applied biasV and on the vibrational energy of
the adsorbate.

7. Conclusion

We have presented a theoretical study of the resonant tunnelling current of the STM at small
variable tip–adsorbate–sample separations. This regime of close contact between tip and
sample in the STM is of high current interest. We have studied the role of the resonant
tunnelling and the influence of the adsorbate vibration on the STM current in the adiabatic
approximation. A somewhat curious behaviour was demonstrated in the current dependence
of the STM for low tip–adsorbate separation, which shows a maximum. This behaviour
was explained as a concurrent effect between the decrease of the resonant level lifetime
and the increase of the shift relative to the Fermi level. Careful experimental measurements
are necessary to demonstrate the discontinuities predicted in the calculations for the STM
conductance.
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Desjonqùeres M C and Spanjard D 1993Concepts in Surface Physics (Springer Surface Science Series)(Berlin:
Springer)

Domcke W and Cederbaum L S 1977aJ. Phys. B: At. Mol. Phys.10 L47
——1977bPhys. Rev.A 16 1465
——1980J. Phys. B: At. Mol. Phys.13 2829
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